TOPOLOGY III MID-TERM EXAM

RAMESH SREEKANTAN

Each question is of 6 marks adding up to a total of 30 marks.

1. Compute the homology groups $H_i(\mathbb{R}^2, \mathbb{Z}^2)$ for all i, where $\mathbb{Z}^2 \longrightarrow \mathbb{R}^2$ is the obvious inclusion. Use this to compute the homology groups of a torus.

2. Prove the 5-lemma : In the diagram

If the horizontal rows are exact and the maps α, β, δ and ϵ are isomorphisms then so is γ .

3. Let

$$f: S^n \longrightarrow S^n$$

be a map of degree 0. Show that there exists points x and y such that f(x) = x and f(y) = -y.

4. Let X be the quotient space of S^2 under the identification $x \sim -x$ for x in the equator S^1 . Compute the homology groups $H_i(X)$.

5. Show that if X is a CW-complex the the group $H_n(X^n)$ of the nskeleton X^n is free. Hint: Show that it is a subgroup of a free abelian group.